Global Solutions of Well-Constrained Transcendental Systems Using Expression Trees and a Single Solution Test
نویسندگان
چکیده
We present an algorithm which is capable of globally solving a well-constrained transcendental system over some sub-domainD ⊂ R, isolating all roots. Such a system consists of n unknowns and n regular functions, where each may contain non-algebraic (transcendental) functions like sin, exp or log. Every equation is considered as a hyper-surface in R and thus a bounding cone of its normal (gradient) field can be defined over a small enough sub-domain of D. A simple test that checks the mutual configuration of these bounding cones is used that, if satisfied, guarantees at most one zero exists within the given domain. Numerical methods are then used to trace the zero. If the test fails, the domain is subdivided. Every equation is handled as an expression tree, with polynomial functions at the leaves, prescribing the domain. The tree is processed from its leaves, for which simple bounding cones are constructed, to its root, which allows to efficiently build a final bounding cone of the normal field of the whole expression. The algorithm is demonstrated on curve-curve intersection, curve-surface intersection, ray-trap and geometric constraint problems and is compared to interval arithmetic.
منابع مشابه
Exact and approximate solutions of fuzzy LR linear systems: New algorithms using a least squares model and the ABS approach
We present a methodology for characterization and an approach for computing the solutions of fuzzy linear systems with LR fuzzy variables. As solutions, notions of exact and approximate solutions are considered. We transform the fuzzy linear system into a corresponding linear crisp system and a constrained least squares problem. If the corresponding crisp system is incompatible, then the fuzzy ...
متن کاملNEW MODELS AND ALGORITHMS FOR SOLUTIONS OF SINGLE-SIGNED FULLY FUZZY LR LINEAR SYSTEMS
We present a model and propose an approach to compute an approximate solution of Fully Fuzzy Linear System $(FFLS)$ of equations in which all the components of the coefficient matrix are either nonnegative or nonpositive. First, in discussing an $FFLS$ with a nonnegative coefficient matrix, we consider an equivalent $FFLS$ by using an appropriate permutation to simplify fuzzy multiplications. T...
متن کاملEstimating the Parameters in Photovoltaic Modules: A Constrained Optimization Approach
This paper presents a novel identification technique for estimation of unknown parameters in photovoltaic (PV) systems. A single diode model is considered for the PV system, which consists of five unknown parameters. Using information of standard test condition (STC), three unknown parameters are written as functions of the other two parameters in a reduced model. An objective function and ...
متن کاملParticle Swarm Optimization for Hydraulic Analysis of Water Distribution Systems
The analysis of flow in water-distribution networks with several pumps by the Content Model may be turned into a non-convex optimization uncertain problem with multiple solutions. Newton-based methods such as GGA are not able to capture a global optimum in these situations. On the other hand, evolutionary methods designed to use the population of individuals may find a global solution even for ...
متن کاملCombined Heat and Power Economic Dispatch using Improved Shuffled Frog Leaping Algorithm
Recently, Combined Heat and Power (CHP) systems have been utilized increasingly in power systems. With the addition penetration of CHP-based co-generation of electricity and heat, the determination of economic dispatch of power and heat becomes a more complex and challenging issue. The optimal operation of CHP-based systems is inherently a nonlinear and non-convex optimization problem with a lo...
متن کامل